Skip to content

How to Truncate Strings Easily with CSS

How to Truncate Strings Easily with CSS

You'll often need to truncate text when working with user interfaces, especially when displaying content within a limited space. CSS provides a straightforward way to handle this scenario, ensuring that long text strings are cut off gracefully without affecting the overall layout.

CSS Truncation Techniques

Single-Line Truncation

If you want to truncate a single line of text, CSS provides a simple solution. The key properties to use here are overflow, white-space, and text-overflow.

.truncate {
white-space: nowrap; /* Prevent the text from wrapping to the next line */
overflow: hidden; /* Ensure content is clipped within the container */
text-overflow: ellipsis; /* Add ellipsis (…) when the text is truncated */
width: 200px; /* Adjust the width as needed */
}

Explanation of properties:

  • white-space: nowrap: This ensures the text stays on a single line, preventing wrapping.
  • overflow: hidden: This hides any content that overflows the container.
  • text-overflow: ellipsis: This adds the ellipsis (…) at the end of the truncated text.

Multi-Line Truncation

While truncating a single line of text is common, sometimes you may want to display multiple lines but still cut off the text when it exceeds a certain number of lines. You can use a combination of CSS properties such as -webkit-line-clamp along with the display and overflow properties.

.multi-line-truncate {
  display: -webkit-box;
  -webkit-line-clamp: 3; /* Limit to 3 lines */
  -webkit-box-orient: vertical;
  overflow: hidden;
  text-overflow: ellipsis;
}

Live example:

Explanation of properties:

  • display: -webkit-box: This is a legacy flexbox-like display property that works with the -webkit-line-clamp property.
  • -webkit-line-clamp: Specifies the number of lines to show before truncating.
  • -webkit-box-orient: vertical: Ensures the box is laid out vertically for proper multi-line truncation.
  • overflow: hidden: Prevents content overflow.
  • text-overflow: ellipsis: Adds an ellipsis after the truncated content.

Why Use CSS for Text Truncation Over JavaScript Techniques?

While it’s possible to truncate text using JavaScript, CSS is often a better choice for this task for several reasons. Let's explore why CSS-based truncation techniques are generally preferred over JavaScript.

Performance Efficiency

CSS operates directly within the browser's layout engine, meaning it doesn’t require additional processing or event handling as JavaScript does. When using JavaScript to truncate text, the script needs to run on page load (or after DOM manipulation), and sometimes, it needs to listen for events such as window resizing to adjust truncation. This can introduce unnecessary overhead, especially in complex or resource-constrained environments like mobile devices.

CSS, on the other hand, is declarative. Once applied, it allows the browser to handle text rendering without any further execution or processing. This leads to faster load times and a smoother user experience.

Simplicity and Maintainability

CSS solutions are much simpler to implement and maintain than their JavaScript counterparts. All it takes is a few lines of CSS to implement truncation. In contrast, a JavaScript solution would require you to write and maintain a function that manually trims strings, inserts ellipses, and re-adjusts the text whenever the window is resized.

Here's the JavaScript Truncation Example to compare the complexity:

JavaScript Truncation Example:

function truncateText(element, maxLength) {
  const originalText = element.textContent;
  if (originalText.length > maxLength) {
    element.textContent = originalText.substring(0, maxLength) + '...';
  }
}

const element = document.querySelector('.truncate');
truncateText(element, 50);

At the example above, we truncated the text to 50 characters which may be 1 line on large screens and 6 lines on mobile and in that case we will need to add more code to truncate it responsively. As you can see, the CSS solution we used earlier is more concise and readable, whereas the JavaScript version is more verbose and requires managing the string length manually.

Responsiveness Without Extra Code

With CSS, truncation can adapt automatically to different screen sizes and layouts. You can use relative units (like percentages or vw/vh), media queries, or flexbox/grid properties to ensure the text truncates appropriately in various contexts.

If you were using JavaScript, you’d need to write additional logic to detect changes in the viewport size and update the truncation manually. This would likely involve adding event listeners for window resize events, which can degrade performance and lead to more complex code.

CSS Example for Responsive Truncation:

.truncate {
  white-space: nowrap;
  overflow: hidden;
  text-overflow: ellipsis;
  max-width: 50%; /* Automatically adjusts based on screen size */
}

To achieve this in JavaScript, you’d need to add more code to handle the width adjustments dynamically, making it more complex to maintain and troubleshoot.

Separation of Concerns

CSS handles the presentation layer of your website, while JavaScript should focus on dynamic functionality or data manipulation. By keeping truncation logic within your CSS, you're adhering to the principle of separation of concerns, where each layer of your web application has a clear, well-defined role.

Using JavaScript for visual tasks like truncation mixes these concerns, making your codebase harder to maintain, debug, and scale. CSS is purpose-built for layout and visual control, and truncation is naturally a part of that domain.

Browser Support and Cross-Browser Consistency

Modern CSS properties like text-overflow and -webkit-line-clamp are widely supported across all major browsers. This means that CSS solutions for truncation are generally consistent and reliable. JavaScript solutions, on the other hand, may behave differently depending on the browser environment and require additional testing and handling for cross-browser compatibility.

While older browsers may not support specific CSS truncation techniques (e.g., multi-line truncation), fallback options (like single-line truncation) can be easily managed through CSS alone. With JavaScript, more complex logic might be required to handle such situations.

Reduced Risk of Layout Shifting

JavaScript-based text truncation risks causing layout shifting, especially during initial page loads or window resizes. The browser may need to recalculate the layout multiple times, leading to content flashing or jumpy behavior as text truncation is applied.

CSS-based truncation is applied as part of the browser’s natural rendering flow, eliminating this risk and ensuring a smoother experience for the user.

Conclusion

CSS is the optimal solution for truncating text in most cases due to its simplicity, efficiency, and responsiveness. It leverages the power of the browser’s rendering engine, avoids the overhead of JavaScript, and keeps your code clean and maintainable. While JavaScript truncation has its use cases, CSS should always be your go-to solution for truncating strings, especially in static or predictable layouts. If you like this post, check out the other CSS posts on our blog!

This Dot is a consultancy dedicated to guiding companies through their modernization and digital transformation journeys. Specializing in replatforming, modernizing, and launching new initiatives, we stand out by taking true ownership of your engineering projects.

We love helping teams with projects that have missed their deadlines or helping keep your strategic digital initiatives on course. Check out our case studies and our clients that trust us with their engineering.

You might also like

CSS Container Queries, what are they? cover image

CSS Container Queries, what are they?

CSS Container queries, what are they? Intro Media queries have always been crucial to building web applications. They help make our apps more accessible and easier to use and ensure we reach most of our audience. Media queries have been essential in frontend development to create unique user interfaces. But now, there’s something new: Container queries. In this blog post, we’ll explore what Container queries are, how they differ from media queries, and why they’re so amazing. So, let’s get started! Refresh on Media queries Media queries have been available in browsers for a long time, but they didn’t become popular until around 2010 when mobile devices started to take off. Media queries let us add specific styles based on the type of device, like screens or printers. This is especially helpful for creating modern, responsive apps. A simple use of Media queries would be changing, for example, a paragraph's font size when the screen width is less than a specific number. ` In this simple example, when the browser’s viewport width is less or equal to 400px, the font size changes to 8px. Notice how straightforward the syntax is: we start with the keyword @media, followed by the type of device it should apply to. In this case, we use screen so it doesn’t affect users who print the page—if you don’t add anything, then it falls back to the default, which is “all” including both print and screen. Then we specify a media feature, in this case, the width. Container queries Container queries are similar to Media queries. Their main function is to apply styles under certain conditions. The difference is that instead of listening to the viewport of the browser, it listens to a container size. Let’s see this example: In the above layout, we have a layout with a sidebar and three cards as the content. Using Media queries we could listen to the viewport width and change the layout depending on a specific width. Like so: ` That’s acceptable, but it requires us to constantly monitor the layout. For example, if we added another sidebar on the right (really weird, but let’s imagine that this is a typical case), our layout would become more condensed: We would need to change our media queries and adjust their range in this situation. Wouldn’t it be better to check the card container’s width and update its styles based on that? That way, we wouldn’t need to worry about if the layout changes, and that’s precisely what container queries are made for! First, to define the container we are going to listen to, we are going to add a new property to our styles: ` The .container class is the one in which our cards reside. By adding the property `container-type, ' we now define this class as a container we want to listen to. We said inline-size as the value to query based on the inline dimensions of the container because we just want to listen to the element's width. The value of container-type will depend on your use case. If you want to listen to both width and height, then size will be a better fit for you. You can also have normal as your container-type value, which means the element won’t act as a query container at all. This is handy if you need to revert to the default behavior. Next, to define our query, we use the new @container CSS at-rule: ` Notice that it is really similar to how we define our Media queries. Now, if we look at the same screen, we will see the following: This is very powerful because we can now style each component with its own rules without changing the rules based on the layout changes. The @container will affect all the defined containers in the scope; we might not want that. We can define the name of our container to specify that we only want to listen to that in specific: ` We can also have a shorthand to define our container and its name: ` Container query length units Container query lengths are similar to the viewport-percentage length units like vh or vw units, but instead of being relative to the viewport, they are to the dimensions of the query container. We have different units, each relative to different dimensions of the container: - cqw: 1% of a query container's width - cqh: 1% of a query container's height - cqi: 1% of a query container's inline size - cqb: 1% of a query container's block size - cqmin: The smaller value of either cqi or cqb - cqmax: The larger value of either cqi or cqb In our example, we could use them to define the font size of our cards: ` Using these units alone isn’t recommended because they’re percentage-based and can have a value we don’t want. Instead, it’s better to use a dynamic range. Using the max function, we can set 2 values and always pick the highest one. Conclusion Container queries bring a fresh and powerful approach to web design but are not meant to replace Media queries. I think their real power shines when used together. Media queries often require constant adjustments as your layout evolves. Container queries, however, let you style individual components based on their dimensions, making the designs more flexible and easier to manage. Adding a new component or rearranging elements won’t force us to rewrite our media queries. Instead, each component handles its styling, leading to cleaner and more organized code. Please note that, as of writing this blog post, they aren’t compatible with all browsers yet. Take a look at this table from caniuse.com: A good fallback strategy for this, when hitting an unsupported browser would be the use of the @support rule, which allows you to apply styles only if the browser supports the CSS feature. For example: ` Ensure your media queries are good enough to keep everything responsive and user-friendly when the condition is unmet. Thank you for reading! Enjoy the extra flexibility that container queries bring to your web designs. Check out a live demo to see it in action. Happy styling!...

Understanding the Difference Between `:focus` and `:focus-visible` in CSS cover image

Understanding the Difference Between `:focus` and `:focus-visible` in CSS

Understanding the Difference Between :focus and :focus-visible in CSS I have learned my fair share about the importance of keyboard accessibility, so I know that visual indication of the focused element is very important. But the well-known :focus pseudo-class is not always the best fit for this job. That's where :focus-visible comes in. Let's look at the differences between these two pseudo-classes and explore the best practices for using them effectively. What is the :focus Pseudo-Class? The :focus pseudo-class is a CSS selector that applies styles to any element that receives focus, regardless of how that focus was triggered. This includes focus events from keyboard navigation, mouse clicks, and touch interactions. Example Usage of :focus ` In this example, the button will display a blue outline whenever it is focused, whether the user clicks on it with a mouse, taps it on a touchscreen, or navigates to it using the keyboard. What is the :focus-visible Pseudo-Class? The :focus-visible pseudo-class is more specialized. It only applies styles to an element when the browser determines that the focus should be visible. This typically occurs when the user navigates via the keyboard or assistive technologies rather than through mouse or touch input. Example Usage of :focus-visible ` Here, the button will only show a blue outline when focused through keyboard navigation or another input method that usually requires visible focus indicators. Key Differences Between :focus and :focus-visible :focus - Behavior: Applies to any element that receives focus, regardless of the input method. - Use Cases: Ensures that all interactions with the element are visually indicated, whether by mouse, keyboard, or touch. :focus-visible - Behavior: Applies styles only when the focus should be visible, such as using a keyboard or assistive technology. - Use Cases: Ideal for scenarios where you want to provide focus indicators only to keyboard and assistive technology users while avoiding unnecessary outlines for mouse and touch users, typically required by design. Accessibility Implications :focus - Pros: - Guarantees that all users can see when an element is focused, which is critical for accessibility. - Cons: - Can lead to a suboptimal experience for mouse users, as focus styles may appear unnecessarily during mouse interactions. :focus-visible - Pros: - Enhances user experience by showing focus indicators only when necessary, thus keeping the interface clean for mouse and touch users. - Tailors the experience for keyboard and assistive technology users, providing them with clear visual cues. - Cons: - Additional considerations may be required to ensure that focus indicators are not accidentally omitted, especially in older browsers that do not support :focus-visible. - There may be cases where you want to show focus indicators for all users, regardless of input method. Best Practices for Using :focus and :focus-visible To achieve the best accessibility and user experience, combining both :focus and :focus-visible in your CSS is often a good idea. Combining :focus and :focus-visible ` Here is a Stackblitz example of what such styling could look like for you to try out and play with. Additional Tips - Test with Keyboard and Assistive Technology: Ensure that your web application is navigable using a keyboard (Tab, Shift + Tab, etc.) and that focus indicators are visible for those who rely on them. It's never a bad idea to include accessibility testing in your e2e testing suite. - Provide Clear Focus Indicators: Make sure that focus indicators are prominent and easy to see. A subtle or hard-to-spot focus indicator can severely impact accessibility for users who rely on keyboard navigation. Conclusion The :focus-visible pseudo-class offers a more refined way to manage focus indicators, improving accessibility and user experience, particularly for keyboard and assistive technology users. By understanding the differences between :focus and :focus-visible, and applying best practices in your CSS, you can create more accessible and user-friendly web applications. Remember, accessibility should never be an afterthought. By thoughtfully applying focus styles, you ensure that all users, regardless of how they interact with your site, can easily navigate and interact....

Lessons from the DOGE Website Hack: How to Secure Your Next.js Website cover image

Lessons from the DOGE Website Hack: How to Secure Your Next.js Website

Lessons from the DOGE Website Hack: How to Secure Your Next.js Website The Department of Government Efficiency (DOGE) launched a new website, doge.gov. Within days, it was defaced with messages from hackers. The culprit? A misconfigured database was left open, letting anyone edit content. Reports suggest the site was built on Cloudflare Pages, possibly with a Next.js frontend pulling data dynamically. While we don’t have the tech stack confirmed, we are confident that Next.js was used from early reporting around the website. Let’s dive into what went wrong—and how you can secure your own Next.js projects. What Happened to DOGE.gov? The hack was a classic case of security 101 gone wrong. The database—likely hosted in the cloud—was accessible without authentication. No passwords, no API keys, no nothing. Hackers simply connected to it and started scribbling their graffiti. Hosted on Cloudflare Pages (not government servers), the site might have been rushed, skipping critical security checks. For a .gov domain, this is surprising—but it’s a reminder that even big names can miss best practices. It’s easy to imagine how this happened: an unsecured server action is being used on the client side, a serverless function or API route fetching data from an unsecured database, no middleware enforcing access control, and a deployment that didn’t double-check cloud configs. Let’s break down how to avoid this in your own Next.js app. Securing Your Next.js Website: 5 Key Steps Next.js is a powerhouse for building fast, scalable websites, but its flexibility means you’re responsible for locking the doors. Here’s how to keep your site safe. 1. Double-check your Server Actions If Next.js 13 or later was used, Server Actions might’ve been part of the mix—think form submissions or dynamic updates straight from the frontend. These are slick for handling server-side logic without a separate API, but they’re a security risk if not handled right. An unsecured Server Action could’ve been how hackers slipped into the database. Why? Next.js generates a public endpoint for each Server Action. If these Server Actions lack proper authentication and authorization measures, they become vulnerable to unauthorized data access. Example: * Restrict Access: Always validate the user’s session or token before executing sensitive operations. * Limit Scope: Only allow Server Actions to perform specific, safe tasks—don’t let them run wild with full database access. * Don’t use server action on the client side without authorization and authentication checks 2. Lock Down Your Database Access Another incident happened in 2020. A hacker used an automated script to scan for misconfigured MongoDB databases, wiping the content of 23 thousand databases that have been left wide open, and leaving a ransom note behind asking for money. So whether you’re using MongoDB, PostgreSQL, or Cloudflare’s D1, never leave it publicly accessible. Here’s what to do: * Set Authentication: Always require credentials (username/password or API keys) to connect. Store these in environment variables (e.g., .env.local for Next.js) and access them via process.env. * Whitelist IPs: If your database is cloud-hosted, restrict access to your Next.js app’s server or Vercel deployment IP range. * Use VPCs: For extra security, put your database in a Virtual Private Cloud (VPC) so it’s not even exposed to the public internet. If you are using Vercel, you can create private connections between Vercel Functions and your backend cloud, like databases or other private infrastructure, using Vercel Secure Compute Example: In a Next.js API route (/app/api/data.js): ` > Tip: Don’t hardcode MONGO_URI—keep it in .env and add .env to .gitignore. 3. Secure Your API Routes Next.js API routes are awesome for server-side logic, but they’re a potential entry point if left unchecked. The site might’ve had an API endpoint feeding its database updates without protection. * Add Authentication: Use a library like next-auth or JSON Web Tokens (JWT) to secure routes. * Rate Limit: Prevent abuse with something like rate-limiter-flexible. Example: ` 4. Double-Check Your Cloud Config A misconfigured cloud setup may have exposed the database. If you’re deploying on Vercel, Netlify, or Cloudflare: * Environment Variables: Store secrets in your hosting platform’s dashboard, not in code. * Serverless Functions: Ensure they’re not leaking sensitive data in responses. Log errors, not secrets. * Access Controls: Verify your database firewall rules only allow connections from your app. 5. Sanitize and Validate Inputs Hackers love injecting junk into forms or APIs. If your app lets users submit data (e.g., feedback forms), unvalidated inputs could’ve been a vector. In Next.js: * Sanitize: Use libraries like sanitize-html for user inputs. * Validate: Check data types and lengths before hitting your database. Example: ` Summary The DOGE website hack serves as a reminder of the ever-present need for robust security measures in web development. By following the outlined steps–double-checking Server Actions, locking down database access, securing API routes, verifying cloud configurations, and sanitizing/validating inputs–you can enhance the security posture of your Next.js applications and protect them from potential threats. Remember, a proactive approach to security is always the best defense....

Next.js + MongoDB Connection Storming cover image

Next.js + MongoDB Connection Storming

Building a Next.js application connected to MongoDB can feel like a match made in heaven. MongoDB stores all of its data as JSON objects, which don’t require transformation into JavaScript objects like relational SQL data does. However, when deploying your application to a serverless production environment such as Vercel, it is crucial to manage your database connections properly. If you encounter errors like these, you may be experiencing Connection Storming: * MongoServerSelectionError: connect ECONNREFUSED <IP_ADDRESS>:<PORT> * MongoNetworkError: failed to connect to server [<hostname>:<port>] on first connect * MongoTimeoutError: Server selection timed out after <x> ms * MongoTopologyClosedError: Topology is closed, please connect * Mongo Atlas: Connections % of configured limit has gone above 80 Connection storming occurs when your application has to mount a connection to Mongo for every serverless function or API endpoint call. Vercel executes your application’s code in a highly concurrent and isolated fashion. So, if you create new database connections on each request, your app might quickly exceed the connection limit of your database. We can leverage Vercel’s fluid compute model to keep our database connection objects warm across function invocations. Traditional serverless architecture was designed for quick, stateless web app transactions. Now, especially with the rise of LLM-oriented applications built with Next.js, interactions with applications are becoming more sequential. We just need to ensure that we assign our MongoDB connection to a global variable. Protip: Use global variables Vercel’s fluid compute model means all memory, including global constants like a MongoDB client, stays initialized between requests as long as the instance remains active. By assigning your MongoDB client to a global constant, you avoid redundant setup work and reduce the overhead of cold starts. This enables a more efficient approach to reusing connections for your application’s MongoDB client. The example below demonstrates how to retrieve an array of users from the users collection in MongoDB and either return them through an API request to /api/users or render them as an HTML list at the /users route. To support this, we initialize a global clientPromise variable that maintains the MongoDB connection across warm serverless executions, avoiding re-initialization on every request. ` Using this database connection in your API route code is easy: ` You can also use this database connection in your server-side rendered React components. ` In serverless environments like Vercel, managing database connections efficiently is key to avoiding connection storming. By reusing global variables and understanding the serverless execution model, you can ensure your Next.js app remains stable and performant....

Let's innovate together!

We're ready to be your trusted technical partners in your digital innovation journey.

Whether it's modernization or custom software solutions, our team of experts can guide you through best practices and how to build scalable, performant software that lasts.

Prefer email? hi@thisdot.co